Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH
نویسندگان
چکیده
This paper describes the simultaneous application of time-sequenced laser-induced fluorescence imaging of OH radicals and stereoscopic particle image velocimetry for measurements of the flame front dynamics in lean and premixed LP turbulent flames. The studied flames could be acoustically driven, to simulate phenomena important in LP combustion technologies. In combination with novel image post processing techniques we show how the data obtained can be used to track the flame front contour in a plane defined by the illuminating laser sheets. We consider effects of chemistry and convective fluid motion on the dynamics of the observed displacements and analyse the influence of turbulence and acoustic forcing on the observed contour velocity, a quantity we term as s2D d . We show that this quantity is a valuable and sensitive indicator of flame turbulence interactions, as (a) it is measurable with existing experimental methodologies, and (b) because computational data, e.g. from large eddy simulations, can be post processed in an identical fashion. s2D d is related (to a twodimensional projection) of the three-dimensional flame displacement speed sd , but artifacts due to out of plane conG. Hartung · J. Hult · M.R. Mackley · C.F. Kaminski ( ) University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge, CB2 3RA, UK e-mail: [email protected] R. Balachandran University College London, Department of Mechanical Engineering, Torrington Place, London, WC1E 7JE, UK C.F. Kaminski SAOT School of Advanced Optical Technologies, Max Planck Institute for the Science of Light, Division III, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany vective motion of the flame surface and the uncertainty in the angle of the flame surface normal have to be carefully considered. Monte Carlo simulations were performed to estimate such effects for several distributions of flame front angle distributions, and it is shown conclusively that s2D d is a sensitive indicator of a quantity related to sd in the flames we study. s2D d was shown to increase linearly both with turbulent intensity and with the amplitude of acousting forcing for the range of conditions studied.
منابع مشابه
Numerical simulation of Lewis number effects on lean premixed turbulent flames
A dominant factor in determining the burning rate of a premixed turbulent flame is the degree to which the flame front is wrinkled by turbulence. Higher turbulent intensities lead to greater wrinkling of the flame front and an increase in the turbulent burning rate. This picture of turbulent flame dynamics must be modified, however, to accommodate the affects of variations in the local propagat...
متن کاملMeasurements of Conditional Velocities in Turbulent Premixed Flames by Simultaneous OH PLIF and PIV
Joint velocity/scalar imaging measurements are performed in turbulent premixed natural-gas/air flames to better characterize the turbulent flux of mean reaction progress variable, ru0c0. Simultaneous two-dimensional measurements of the velocity field and the relative OH concentration are obtained by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical,...
متن کاملWrinkling Scales of Turbulent Premixed Propagating Flame Fronts Obtained From LIF-OH Imaging
A key outstanding issue with turbulent premixed flames lies in modeling the burning rate which may be related to the flame surface density if the laminar flamelet assumption applies. Although it is generally accepted that, in the flamelet regimes, higher turbulence levels increases flame wrinkling and hence its surface density, recent imaging experiments are not consistent making this a controv...
متن کاملEffects of Small-Scale Turbulence on NOx Formation in Premixed Flame Fronts
Abstract A flamelet-based approach that accounts for turbulence-chemistry interaction has been formulated to simulate NOx formation in turbulent lean premixed combustion. In the simulations, the species NO is transported and solved with the chemical source term being modelled through its formation in flame fronts and its formation rate in post-flame regions. The flame-front NO and post-flame NO...
متن کاملSimultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames
We report the simultaneous measurement of the flamefront location, using single-shot CH planar laserinduced fluorescence (PLIF), and the velocity field, using two-color digital particle imaging velocimetry (PIV), in nonpremixed turbulent flames. To minimize the influence of particle scattering on the CH PLIF images, we pump a CH B-X(0,0) transition at 390 nm and detect A-X fluorescence at 420–4...
متن کامل